Efficient Conversion of Carbohydrates into 1-C-Alditols: Application to the Synthesis of Chiral γ-Substituted Butenolides and Bicyclic Alkaloid Analogues

Alicia Boto,* Dácil Hernández, and Rosendo Hernández*
Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
alicia@ipna.csic.es; rhernandez@ipna.csic.es

Received February 29, 2008

1) Scission
2) Alkylation

Readily available sugar derivatives were transformed in a few steps into valuable, more complex products. The tandem radical scission of carbohydrates-oxidation reaction gave acetoxy acetals, which were converted into a variety of chiral C-alditols in good global yields and excellent 1,2-trans stereoselectivity. The reaction was the key step in the synthesis of hydroxylated γ-substituted butenolides and bicyclic alkaloid analogues.

Introduction

Carbohydrates have proven very valuable to generate other chiral compounds with polyhydroxylated chains. ${ }^{1}$ However, when the required stereochemistry corresponds to sugars of unusual series, expensive starting materials or considerable manipulation of common chains is required. In an effort to transform readily available, inexpensive sugars into those of less usual series, the β-fragmentation reaction of anomeric alkoxyl radicals $\mathbf{1}$ (Scheme 1) was studied. To generate the O-radicals, the carbohydrates were treated with (diacetoxy)iodobenzene (DIB) and iodine. ${ }^{2,3}$ A β-fragmentation reaction took place, producing a carbon radical 2 , which was oxidized in the reaction mixture to an oxycarbenium ion $\mathbf{3}^{2,3}$ This, in turn, was trapped by an acetate moiety from DIB (Scheme 1)

[^0]SCHEME 1. Conversion of Carbohydrate Derivatives into Sugars of Less Common Series and 1-C-Alditols

to give the acetoxy derivatives 4. In this way, a D-galactose chain could be transformed into a D-lyxose unit, a ribose derivative was transformed into a threose moiety, and so on, under very mild conditions.

SCHEME 2. Butenolides with Hydroxylated γ-Substituents: Possible Targets for the Fragmentation/Alkylation Methodology

Natural $\boldsymbol{\gamma}$-substituted butenolides:

Retrosynthetic scheme:

We reasoned that products 4 could be treated with different carbon nucleophiles (such as allylsilanes or enolsilyl ethers), in the presence of a Lewis acid, to give 1-C-alditols 5 (Scheme 1), which are useful precursors of many bioactive products. A possible modification of this methodology would couple the scission and the nucleophilic addition steps, avoiding the purification of the acetate intermediates 4 . In this article we study the feasibility of these approaches and the application of the scission-oxidation reaction to prepare valuable products such as chiral butenolides with hydroxylated γ-substituents and polyhydroxylated alkaloid analogues.

The butenolide moiety with hydroxylated chains at the γ-position (Scheme 2) is present in many natural products and bioactive compounds, ${ }^{4}$ such as iso-cladospolide B (6) ${ }^{5}$ and vitamin C analogues. ${ }^{6}$ Besides, it is an important synthetic intermediate, as exemplified in the preparation of the cytotoxic goniofufurone (7), ${ }^{7}$ hydroxylated carbocycles, ${ }^{8}$ and highercarbon sugars. ${ }^{9}$ A variety of γ-substituted butenolide derivatives
(3) For related work on this subject, see: (a) Boto, A.; Hernández, D.; Hernández, R.; Álvarez, E. J. Org. Chem. 2007, 72, 9523-9532. (b) Francisco, C. G.; González, C.; Suárez, E. J. Org. Chem. 1998, 63, 8092-8093. (c) de Armas, P.; Francisco, C. G.; Suárez, E. Angew. Chem., Int. Ed. Engl. 1992, 31, 772-774. (d) For a review on the modification of carbohydrates through radical chemistry, see: Hansen, S. G.; Skrydstrup, T. Top. Curr. Chem. 2006, 264, 135162.
(4) (a) Koch, S. S. C.; Chamberlin, A. R. In Enantiomerically Pure γ-Butirolactones in Natural Products Synthesis; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, 1995; pp 687-725. (b) Ma, S. Acc. Chem. Res. 2003, 36, 701-712. (c) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem. Soc. Rev. 2000, 109-118. (d) For recent articles on the subject, see: Schuyler, A.; Caufield, C. E.; Hu, W.; Keeney, D.; Labthavikul, P.; Morris, K.; Naughton, S. M.; Petersen, P.; Rasmussen, B. A.; Singh, G.; Yang, Y. Bioorg. Med. Chem. Lett. 2006, 16, 176-180. (e) Li, R. T.; Han, Q. B.; Zheng, Y. T.; Wang, R. R.; Yang, L. M.; Lu, Y.; Sang, S. Q.; Zheng, Q.-T.; Zhao, Q. S.; Sun, H. D. Chem. Commun. 2005, 23, 2936-2938. (f) Teijeira, M.; Suárez, P. L.; Gómez, G.; Terán, C.; Fall, Y. Tetrahedron Lett. 2005, 46, 5889-5892, and references therein.
(5) (a) Trost, B. M.; Aponick, A. J. Am. Chem. Soc. 2006, 128, 3931-3933. (b) Sharma, G. V. M.; Reddy, K. L.; Reddy, J. J. Tetrahedron Lett. 2006, 47, 6537-6540. (c) Pandey, S. K. Tetrahedron Lett. 2005, 46, 6625-6627. (d) Franck, X.; Araujo, M. E.; Jullian, J.-C.; Hocquemiller, R.; Figadere, B. Tetrahedron Lett. 2001, 42, 2801-2803.
(6) (a) Ge, P.; Kira, K. L. J. Org. Chem. 1996, 61, 8671-8673.
(7) (a) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2008, 73, 2-11. (b) Yadav, V. K.; Agrawal, D. Chem. Commun. 2007, 5232-5234, and references therein.
(8) (a) Rassu, G.; Auzzas, L.; Zambrano, V.; Burreddu, P.; Battistini, L.; Curti, C. Tetrahedron: Asymmetry 2003, 14, 1665-1670. (b) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.; Battistini, L.; Zanardi, F.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. J. Org. Chem. 2001, 66, 8070-8075. (c) Rassu, G.; Auzzas, L.; Pinna, L.; Battistini, L.; Zanardi, F.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. J. Org. Chem. 2000, 65, 6307-6318. (d) Horneman, A. M.; Lundt, I. Tetrahedron 1997, 53, 6879-6892.
(9) Martin, S. F.; Zinke, P. W. J. Am. Chem. Soc. 1989, 111, 2311-2313.

Lepadin B(9)
$\mathrm{R}^{1}=(\mathrm{CH}=\mathrm{CH})_{2}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{3}$ $\mathrm{R}^{2}=\mathrm{H}$

Alkaloid
analogues 10
$\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}$, alkyl, acyl, etc

FIGURE 1. Decahydroquinoline alkaloids and their analogues.
8 could be formed by addition of a furan-derived nucleophile such as (trimethylsilyloxy)furan (TMSOF) ${ }^{10}$ to the acetoxy acetals 4.

An even more challenging target would be the decahydroquinoline family of alkaloids ${ }^{11}$ (Figure 1), such as Lepadin B (9), ${ }^{12}$ which has displayed potent antitumoral activity. To study the structure-activity relationships, it would be useful to prepare bicyclic analogues $\mathbf{1 0}$ with different ring sizes and substituents. By introducing changes in the substituents, it would be possible to modulate the hydrophilicity of the analogues and their biological activity. The application of the scission/alkylation procedure to the preceding examples would allow determination of the scope and versatility of this methodology.

Results and Discussion

The starting materials for the fragmentation reaction were ribose and mannose derivatives $\mathbf{1 1 - 1 3}$ (Scheme 3), which were

SCHEME 3. Conversion of Carbohydrate Derivatives into Acetoxy Acetals and 1-Allyl Polyols ${ }^{15}$

SChEME 4. Conversion of Carbohydrates into Acetoxy Acetals and Polyhydroxylated Ketones

prepared according to reported procedures. ${ }^{2 a, 3 a}$ When they were treated with DIB and iodine under irradiation with visible light (80-W tungsten-filament lamp), the scission took place affording the acetoxy acetals $\mathbf{1 4 - 1 6}{ }^{2 a, 3 a}$ in good yields. The acetals $\mathbf{1 4 - 1 6}$ were then treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and allyltrimethylsilane, using different solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or MeCN$)$ and temperatures; the best results were obtained with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$.

The yield for compound $\mathbf{1 7}$ was low (21%); ${ }^{13}$ however, its 5-benzoate analogue 18 and the allyl derivative 19 were isolated in satisfactory yields (62% and 46%, respectively). ${ }^{14}$

The direct transformation of carbohydrate substrates 11-13 into the allyl derivatives $\mathbf{1 7 - 1 9}$ was studied next. The substrates

[^1]were treated under the previous scission conditions for 1 h , and then the reaction mixture was cooled to $-40^{\circ} \mathrm{C}$, followed by dropwise addition of allylTMS and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The solution was allowed to reach $0{ }^{\circ} \mathrm{C}$ and was stirred for 3 h . The one-pot procedure generated the allyl derivatives $\mathbf{1 7}$ and 18, the yields being similar to those obtained in the two-step sequence (21% for $\mathbf{1 7}, 62 \%$ for $\mathbf{1 8})$. In the case of product $19(25 \%)$, the twostep method gave better results than the one-pot procedure.

The acetoxy acetals $\mathbf{1 4}$ and $\mathbf{1 6}$ were also reacted with silyl enol ethers. When 1-phenyl-(trimethylsilyloxy)ethene was used as the nucleophile, the phenyl ketones 20 and 21 (Scheme 4) were obtained quantitatively. In contrast, the one-pot scissionalkylation from sugar substrates $\mathbf{1 1}$ and $\mathbf{1 3}$ proceeded in low yields.

The scission/alkylation procedure was then studied with pyranose substrates 22 and 23 . Thus, the mannopyranose and rhamnopyranose derivatives $\mathbf{2 2}^{16}$ and $\mathbf{2 3}{ }^{2 a, 3 a}$ (Scheme 4) were transformed into their acetoxy acetals 24 and $\mathbf{2 5},{ }^{2 a, 3 a}$ respectively. These acetates were treated with $\mathrm{PhC}(\mathrm{OTMS})=\mathrm{CH}_{2}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, affording the phenyl ketones 26 and $\mathbf{2 7}^{2 \mathrm{a}, 3 \mathrm{a}}$ in good yields. However, the one-pot procedure gave low yields of the phenyl ketones. Therefore, the other examples (giving butenolides and bicyclic alkaloid precursors, see below) were carried out using the two-step sequence.

The phenyl ketones were obtained with high 1,2-trans stereoselectivity: ${ }^{17,18}$ when the acetate precursors $14-16$ and

[^2]TABLE 1. Addition of (TMS)Furan to Acetoxy Acetals

acetoxy acetals	products $28-39(\%)^{\text {a }}$	global yield $(\%)$

	 28 (1'R, 28\%) 29 (1'S, 7\%)		83\%
 16	 31 (1'S, 27\%) 32 (1'R, 19\%)	 33 (40\%)	86\%
 24	 34 (1'S, 21\%) 35 (1'R, 11\%)		62\%
	 37 (1 ' $R, 29 \%$) 38 (1 'S, 10\%)		76\%

${ }^{a}$ Yields for products purified by chromatography on silica gel.
$\mathbf{2 4 - 2 5}$ were treated with the Lewis acid, an oxycarbenium ion was formed. The adjacent stereogenic center controlled the addition of the nucleophile, which took place from the less hindered side of the cyclic oxycarbenium intermediate, ${ }^{3 a}$ affording the 1,2-trans products.

Application of the Fragmentation/Alkylation Procedure to the Synthesis of Chiral $\boldsymbol{\gamma}$-Substituted Butenolides. An expedient way to prepare butenolides is shown in Table 1. The acetoxy acetals $\mathbf{1 4}, \mathbf{1 6}, \mathbf{2 4}$, and $\mathbf{2 5}$ were reacted with (trimethylsilyloxy)furan, in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, yielding the furanones $28-\mathbf{3 9}$ in good global yield. The nucleophilic addition was stereoselective, and in all cases, the 1,2-trans products were obtained exclusively. ${ }^{18,19}$ As for the stereochemistry of $\mathrm{C}-1^{\prime}$ in

[^3]the conjugated furanones $\mathbf{2 8} / \mathbf{2 9}, \mathbf{3 1} / \mathbf{3 2}, \mathbf{3 4} / \mathbf{3 5}$, and $\mathbf{3 7} / \mathbf{3 8}$, the major diastereomer presented an $1,1^{\prime}$-anti ($1,1^{\prime}$-erythro) disposition. Their stereochemistry was unequivocally determined by comparison with related compounds, ${ }^{19}$ which presented a $J_{1,1^{\prime}}$ $=0-3 \mathrm{~Hz}$ for the $1,1^{\prime}$-threo diastereomers and a $J_{1,1^{\prime}}=8-10$ Hz for the $1,1^{\prime}$-erythro isomers.
(18) The experimental coupling constants observed for compounds 21 ($J_{1,2}$ $=8.1 \mathrm{~Hz})$ and $26\left(J_{1,2}=7.8 \mathrm{~Hz}\right)$ and for the other scission-alkylation products $\left(J_{1,2}=6.5-8.5 \mathrm{~Hz}\right)$ matched theoretical coupling constants for 1,2-trans derivatives. The theoretical $J_{1,2}$ for the 1,2-trans and the 1,2-cis products were calculated over minimized structures by using the Karplus-Altona equation implemented in the Macromodel 7.0 program. The calculations were performed with a MMFF force field, using high-quality parameters. Values of $J_{1,2}=6.3-$ 10.0 Hz and $J_{1,2}=4.0-6.0 \mathrm{~Hz}$ were obtained for the 1,2-trans and the 1,2-cis compounds, respectively.
(19) (a) Hornemann, A. M.; Lundt, I. Synthesis 1999, 317-325. (b) Hornemann, A. M.; Lundt, I. Tetrahedron 1997, 53, 6879-6892. (c) de March, P.; Figueredo, M.; Font, J.; Raya, J.; Alvarez-Larena, A.; Piniella, J. F. J. Org. Chem. 2003, 68, 2437-2447.

SCHEME 5. Conversion of Conjugated Lactones into Enol Esters and Higher Sugars

SCHEME 6. Retrosynthesis of Polyhydroxylated Bicyclic Alkaloids

Surprisingly, the unconjugated lactones 30, 33, 36, and 39 were the major products, and in most cases their yield was similar to the combined yield of the conjugated isomers. Their formation can be explained as shown in Scheme 5. The nucleophilic addition would initially yield the conjugated lactones, which would undergo proton abstraction at $\mathrm{C}-1^{\prime}$, generating the 4^{\prime}-hydroxyfuran intermediates 40 . These intermediates would be in tautomeric equilibrium with the unconjugated lactones, as suggested by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, where the $3^{\prime}-\mathrm{H}_{2}$ and the $3^{\prime}-\mathrm{C}$ are observed at very low fields ($\delta_{\mathrm{H}} \approx 5.0$ and $\delta_{\mathrm{C}} \approx 80.0$, respectively). The lactones 30, 33, 36, and 39 are useful precursors of ketoses $41 .{ }^{19}$

In a similar way, the conjugated furanones 28/29, 31/32, 34/ 35 , and $37 / 38$ can be modified by reduction, alkylation, dihydroxylation, amino hydroxylation, etc., ${ }^{20}$ giving a variety of functionalized butenolides and higher-carbon sugars with different substituents and stereochemistries.

Application of the Fragmentation/Alkylation Procedure to the Synthesis of Bicyclic Alkaloid Analogues. The decahydroquinoline alkaloids have elicited many synthetic efforts ${ }^{21,22}$ due to their interesting biological properties. ${ }^{23}$ In order to study the influence of substituents on their hydrophilicity and their
(20) Ahmed, M. M.; O'Doherty, G. A. J. Org. Chem. 2005, 70, 10576-10578, and references therein.
biological activity, a short process to obtain hydroxylated derivatives was developed (Scheme 6). Thus, the bicyclic core in 42 could be formed by reductive amination ${ }^{24}$ of diketone 43. The latter can be prepared from the cyclohexanone derivative 44, by hydrolysis of the formate group and oxidation. Finally, 44 would be prepared from readily available sugars 45 , using the fragmentation/alkylation sequence.

Thus, the scission products $\mathbf{1 4}, \mathbf{1 6}, \mathbf{2 4}$, and 25 were treated with (trimethylsilyloxy)cyclohexene and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, yielding the cyclohexanones 46-49 (Table 2) in good global yields. The nucleophilic addition gave exclusively 1,2-trans products, ${ }^{25}$ but inseparable mixtures of $\mathrm{C}-1^{\prime}$ epimers were formed. The diastereomers were separated at a later stage.

Thus, the cyclohexanones 46, 47, and 49 were transformed into the alkaloid analogues 56-61 (Scheme 7).

On treatment with methanolic NaHCO_{3}, the alcohols $\mathbf{5 0 - 5 2}$ were generated in excellent yields and then were oxidized to the diketones $\mathbf{5 3 - 5 5}$. The following step required considerable experimentation, but finally the reductive amination ${ }^{24}$ was achieved with the system benzylamine/ $\mathrm{AcOH} / \mathrm{NaBH}_{3} \mathrm{CN}$, in the presence of molecular sieves.

To our satisfaction, only two of the eight possible diastereomers were detected in each reaction. In all cases, a cis ring fusion was observed. The stereochemistry was based on NOESY experiments (Figure 2) and on the value of the $\mathrm{H}-\mathrm{H}$ coupling constants in the ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{26}$

Thus, for compound $\mathbf{5 6}$ the ${ }^{1} \mathrm{H}$ NMR spectra gave a coupling constant $J_{4 \mathrm{a}, 8 \mathrm{a}}=4.7 \mathrm{~Hz}$, which suggested a cis relationship between $4 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}$ (the trans relationship would imply $\left.J_{4 \mathrm{a}, 8 \mathrm{a}} \approx 11 \mathrm{~Hz}\right) .{ }^{26}$ Similarly, $J_{4,4 \mathrm{a}}=11.7 \mathrm{~Hz}(4-\mathrm{H} / 4 \mathrm{a}-\mathrm{H}$ trans $)$ and $J_{2,3}=9.6 \mathrm{~Hz}(2-\mathrm{H} / 3-\mathrm{H}$ trans $)$. The NOESY experiment
(21) (a) Panda, M.; Phuan, P.; Kozlowski, C. M. J. Org. Chem. 2003, 68, 564-571. (b) Harris, J. M.; Padwa, A. J. Org. Chem. 2003, 68, 4371-4381. (c) Qadir, M.; Priestley, R. E.; Rising, T.; Gelbrich, T.; Coles, S. J.; Hursthouse, M. B.; Sheldrake, P. W.; Whittall, N.; Hii, K. K. Tetrahedron Lett. 2003, 44, 3675-3678. (d) Armesto, D.; Caballero, O.; Ortíz, M. J.; Agarrabeitia, A. R.; Martín-Fontecha, M.; Torres, M. R. J. Org. Chem. 2003, 68, 6661-6671.
(22) (a) Davis, F. A.; Xu, H.; Zhang, J. J. Org. Chem. 2007, 72, 2046-2052. (b) Gray, D.; Gallagher, T. Angew. Chem., Int. Ed. 2006, 45, 2419-2423. (c) Sósnicki, J. G. Tetrahedron Lett. 2006, 47, 6809-6812. (d) Turenen, B. J.; Georg, G. I. J. Am. Chem. Soc. 2006, 128, 8702-8703. (e) Gracias, V.; Gasiecki, A. F.; Pagano, T. G.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8873-8876. (f) Voskressensky, L. G.; Akbulatov, S. V.; Borisova, T. N.; Barlamov, A. V. Tetrahedron 2006, 62, 12392-12397. (g) Yépez, A. F.; Palma, A.; Stashenko, E.; Bashas, A.; Amaro-Luis, J. M. Tetrahedron Lett. 2006, 47, 5825-5828. (h) Holub, N.; Neidhöfer, J.; Blechert, S. Org. Lett. 2005, 7, 1227-1229.
(23) (a) Vazzana, I.; Budriesi, R.; Terranova, E.; Ioan, P.; Ugenti, M. P.; Tasso, B.; Chiarini, A.; Sparatore, F. J. Med. Chem. 2007, 50, 334-343. (b) Tsukada, J.; Tahara, A.; Tomura, Y.; Kusayama, T.; Wada, K.; Ishii, N.; Taniguchi, N.; Suzuki, T.; Yarsu, T.; Uchida, W; Shibasaki, M. Vasc. Pharmacol. 2005, 42, 47-55. (c) Tsukada, J.; Tahara, A.; Tomura, Y.; Wada, K.; Kusayama, T.; Ishii, N.; Aoki, M.; Yarsu, T.; Uchida, W; Taniguchi, N.; Tanaka, A. Eur. J. Pharmacol. 2002, 446, 129-138. (d) Zucotto, F.; Zbelebil, M.; Brun, R.; Chowdhury, S. F.; Lucrezia, R. D.; Leal, I.; Maes, L.; Ruiz-Perez, M. L.; Pacanows, D. G.; Gilbert, I. A. Eur. J. Med. Chem. 2001, 36, 395-405. (e) Oliveira, D. F.; Severino, E. A.; Correia, C. R. D. Tetrahedron Lett. 1999, 40, 2083-2086, and references therein.
(24) (a) Gravier-Pelletier, C.; Maton, W.; Le Merrer, Y. Synlett 2003, 333336. (b) Manescalchi, F.; Nardi, A. R.; Savoia, D. Tetrahedron Lett. 1994, 35, 2775-2778.
(25) NOESY experiments were carried out for compound 49 and for products derived from the cyclohexanones $\mathbf{4 6}-\mathbf{4 9}$, such as the bicyclic systems $56-61$ (commented later in the text), supporting the assigned 1,2-trans stereochemistry. For compound 49, the following spatial interactions were observed: 1-H $\left(\delta_{\mathrm{H}}\right.$ $4.49 / 4.36) / 3-\mathrm{H}\left(\delta_{\mathrm{H}} 3.56 / 3.43\right), 2-\mathrm{H}\left(\delta_{\mathrm{H}} 3.95\right) / 1^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 2.75\right), 2-\mathrm{H}\left(\delta_{\mathrm{H}} 3.95 / 3.86\right) /$ 4-H ($\delta_{\mathrm{H}} 5.15$), 2-H/cyclohexanone protons ($\delta_{\mathrm{H}} 1.5-2.5$).
(26) (a) The experimental coupling constants matched theoretical ones, calculated as described in ref 18. (b) For information on the Karplus-Altona equation, see: Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783-2792. (c) For more information on this software, see: Mohamadi, F.; Richard, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrikson, T.; Stille, W. C. J. Comput. Chem. 1990, 11, 440.

TABLE 2. Addition of (Trimethylsilyloxy)cyclohexene to Acetoxy Acetals

acetoxy acetals
${ }^{a}$ Yields for products purified by chromatography. ${ }^{b}$ The d.r. were determined by ${ }^{1} \mathrm{H}$ NMR.
showed the spatial correlations $2-\mathrm{H} / 8-\mathrm{H} \alpha, 4-\mathrm{H} / 8-\mathrm{H} \alpha$, and $3-\mathrm{H} /$ $4 \mathrm{a}-\mathrm{H}$, which supported the assigned stereochemistry. The minor diastereomer 57 presented $J_{2,3}=9.7 \mathrm{~Hz}(2-\mathrm{H} / 3-\mathrm{H}$ trans $)$ and the following NOESY spatial correlations: $2-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}, 2-\mathrm{H} / 4-$ H , and $4-\mathrm{H} / 8 \mathrm{a}-\mathrm{H}$.
The other quinoline derivatives, compounds $\mathbf{5 8}$ and $\mathbf{5 9}$, were obtained in similar overall yield (51%) and diastereomeric ratio. Their configurations were determined using the $J_{\mathrm{H}, \mathrm{H}}$ coupling constants from the ${ }^{1} \mathrm{H}$ NMR spectra and the spatial correlations from the NOESY experiments, as shown in Figure 2.

The formation of the polyhydroxylated decahydrobenzoazepines $\mathbf{6 0}$ and $\mathbf{6 1}$ took place in moderate global yield (39\%). However, this result is remarkable since the formation of medium-size rings is often difficult, and in addition, four steps are involved in the reductive amination-cyclization reaction. The azepine 60 presented a cis relationship between $2-\mathrm{H}$ and $3-\mathrm{H}\left(J_{2,3}=4.5 \mathrm{~Hz}\right)$, while its diastereomer 61 possessed a 2,3trans relationship $\left(J_{2,3}=8.0 \mathrm{~Hz}\right) .{ }^{27}$ On the other side, the NOESY experiment for compound 60 showed a $4-\mathrm{H} / 5 \mathrm{a}-\mathrm{H}$
spatial correlation, whereas for isomer 61 the following correlations were observed: $2-\mathrm{Me} / 9 \mathrm{a}-\mathrm{H}, 2-\mathrm{Me} / 3-\mathrm{H}, 2-\mathrm{Me} / 5-\mathrm{H}, 3-\mathrm{H} /$ $5-\mathrm{H}$ and $5-\mathrm{H} / 9 \mathrm{a}-\mathrm{H}$. The formation of the functionalized bicyclic products $\mathbf{5 6} \mathbf{- 6 1}$ shows the versatility of this methodology. In a similar way, other polycyclic systems could be prepared by using different sugar-derived acetoxy acetals and cyclic silyl enol ethers.

Conclusion

A mild, efficient strategy to prepare C-alditols, which are valuable as synthetic intermediates or as bioactive compounds, is reported herein. The method is based on a tandem radical scission-oxidation reaction and uses readily available carbohydrates as starting materials. The fragmentation of sugar derivatives afforded acetoxy acetals, which were transformed by allylation or alkylation into a variety of C-alditols in good
(27) The theoretical calculations gave $J_{2,3}=3.0-4.5 \mathrm{~Hz}$ for the 2,3-cis relationship and $J_{2,3}=8.5-10.1 \mathrm{~Hz}$ for the 2,3-trans relationship.

Isomer 57:
$\begin{aligned} J_{2,3} & =9.7 \mathrm{~Hz} \\ J_{3,4} & =9.3 \mathrm{~Hz}\end{aligned}$
Isomer $56:$
$J_{2.3}=9.6 \mathrm{~Hz}$
$J_{3,4}=9.0 \mathrm{~Hz}$
$J_{4,4 \mathrm{a}}=11.7 \mathrm{~Hz}$
$J_{4 \mathrm{a}, 8 \mathrm{a}}=4.7 \mathrm{~Hz}$

$J_{3,4}=9.3 \mathrm{~Hz}$

Isomer 58:
$J_{2,3}=10.7 \mathrm{~Hz}$
$J_{3,4}=9.1 \mathrm{~Hz}$
$J_{4,4 \mathrm{a}}=3.0 \mathrm{~Hz}$
$J_{4 \mathrm{a}, 8 \mathrm{a}}=4.8 \mathrm{~Hz}$

Isomer 59:
$J_{2,3}=9.9 \mathrm{~Hz}$ $J_{3,4}=9.1 \mathrm{~Hz}$ $J_{4,4 a}=11.7 \mathrm{~Hz}$

Isomer 61:
$J_{2,3}=8.0 \mathrm{~Hz}$
$J_{3,4}=9.0 \mathrm{~Hz}$
$J_{4.5}=9.4 \mathrm{~Hz}$

FIGURE 2. $J_{\mathrm{H}, \mathrm{H}}$ (from ${ }^{1} \mathrm{H}$ NMR) and NOESY spatial correlations for products 56-61.

SCHEME 7. Synthesis of Polyhydroxylated Bicyclic Alkaloid Analogues 56-61

$\left.\left.\begin{array}{l}46 \mathrm{R}=\mathrm{CHO} \\ 50 \mathrm{R}=\mathrm{H}(92 \%)\end{array}\right) \begin{array}{c}1 \% \mathrm{NaHCO}_{3}, \quad 47 \mathrm{R}=\mathrm{CHO} \\ \mathrm{MeOH}, \mathrm{rt}, 0.5 \mathrm{~h} \\ 51 \mathrm{R}=\mathrm{H}(90 \%)\end{array}\right) \begin{aligned} & 1 \% \mathrm{NaHCO}_{3}, \\ & \mathrm{MeOH}, \mathrm{rt}, 0.5 \mathrm{~h}\end{aligned}\left(\begin{array}{l}49 \mathrm{R}=\mathrm{CHO} \\ 52 \mathrm{R}=\mathrm{H}(91 \%)\end{array}\right.$

$$
\begin{gathered}
\text { Jones' reagent, } \\
\text { dry acetone, } 0^{\circ} \mathrm{C}, 6
\end{gathered}
$$

$\downarrow \begin{gathered}\text { Jones' reagent, } \\ \text { dry acetone, } 0^{\circ} \mathrm{C}, 6 \mathrm{~h}\end{gathered} \downarrow$

53 (72\%)
54 (66\%)
55 (76\%)
$\mathrm{BnNH}_{2}: \mathrm{AcOH}(1: 1)$,
$\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}$
$\mathrm{BnNH}_{2}: \mathrm{AcOH}(1: 1)$, $\underset{\mathrm{MaBH}}{3} \mathrm{CN}, \mathrm{MeOH}, \quad \mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}$,

(22\%)
global yields and excellent 1,2-trans stereoselectivity. To highlight its versatility, the scission/alkylation process was applied to prepare chiral polyhydroxylated butenolides and highly functionalized bicyclic alkaloid analogues.

Experimental Section

General Procedure for $\boldsymbol{\beta}$-Fragmentation of Carbohydrate Derivatives 11-13, 22, and 23. To a solution of the carbohydrate $(1.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under nitrogen were added (diacetoxyiodo)benzene (DIB) ($386 \mathrm{mg}, 1.2 \mathrm{mmol}$) and iodine (254 $\mathrm{mg}, 1.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature ($26^{\circ} \mathrm{C}$) under irradiation with visible light ($80-\mathrm{W}$ tungstenfilament lamp) for 1 h . Then it was poured into aqueous 10% sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ and extracted with dichloromethane. The organic layer was washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was purified by chromatography on silica gel (hexanes/EtOAc), yielding the purified acetoxy acetals $\mathbf{1 4 - 1 6},{ }^{2} \mathbf{2 4}$, and $25 .{ }^{2}$
(1S)-1-Acetoxy-4-O-formyl-1,2-O-isopropylidene-3,5-di-O-methyl-d-arabinitol (24). The acetate was obtained as the 1,2trans isomer (87%). Colorless oil; $[\alpha]_{\mathrm{D}}-53\left(c 0.30, \mathrm{CHCl}_{3}\right.$); IR $\left(\mathrm{CHCl}_{3}\right) 1728,1083,1084 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.46$ $(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.53(3 \mathrm{H}, \mathrm{s}), 3.64$ $(1 \mathrm{H}, \mathrm{dd}, J=4.8,11.1 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=3.7,6.8 \mathrm{~Hz}), 3.68$ $(1 \mathrm{H}, \mathrm{dd}, J=2.8,11.1 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=3.1,3.3 \mathrm{~Hz}), 5.12$ $(1 \mathrm{H}, \mathrm{ddd}, J=2.7,4.6,7.2 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 8.08$ $(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 21.2\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right), 59.0\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 70.2\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 77.8(\mathrm{CH})$, 82.3 (CH), 96.7 (CH), 113.2 (C), 160.1 (CH), 170.4 (C); MS m/z (rel intensity) $291\left(\mathrm{M}^{+}-\mathrm{Me}, 14\right), 101$ ([2,2-dimethyldioxolane $\left.\mathrm{H}]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{8}, 291.1080$; found, 291.1050; calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}, 101.0603$; found, 101.0645. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{8}$: C, $50.98 ; \mathrm{H}, 7.24$. Found: C, $51.00 ; \mathrm{H}, 7.55$.

Conversion of Acetoxy Acetals 14-16 into Allyl Derivatives 17-19. A solution of the acetoxy acetals (1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} / \mathrm{mmol}$ substrate $)$ at $-40{ }^{\circ} \mathrm{C}$ was treated with allyltrimethylsilane (3 equiv), and then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2 equiv) was added dropwise. The reaction mixture was allowed to reach $26^{\circ} \mathrm{C}$ and then was stirred for $0.5-3.0 \mathrm{~h}$. Then it was poured into saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuum. The residue was purified by chromatography on silica gel (hexanes/ EtOAc) affording the allyl derivatives 17-19.
(1R/1S)-Allyl-3-O-formyl-1,2-O-isopropylidene-4-O-methyl-derythritol (17). The allyl derivative 17 was obtained as a volatile colorless oil (25\%). Product 17 is an inseparable mixture of the $1 R$ and $1 S$ diastereomers (trans:cis 99:1), but only the major isomer is described. IR $\left(\mathrm{CHCl}_{3}\right) 1725,1117,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{ddd}, J=7.1,7.1,14.4$ $\mathrm{Hz}), 2.44(1 \mathrm{H}, \mathrm{ddd}, J=4.3,6.3,14.6 \mathrm{~Hz}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.62(1 \mathrm{H}$, dd, $J=5.8,11.0 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=3.6,11.0 \mathrm{~Hz}), 3.91(1 \mathrm{H}$, dd, $J=6.3,7.0 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{ddd}, J=4.3,7.3,7.4 \mathrm{~Hz}), 5.12$ $(1 \mathrm{H}, \mathrm{dd}, J=1.4,18.5 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}), 5.19(1 \mathrm{H}$, ddd, $J=3.6,5.9,5.9 \mathrm{~Hz}), 5.88(1 \mathrm{H}$, dddd, $J=6.8,6.9,10.3,17.2$ $\mathrm{Hz}), 8.31(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 26.9\left(\mathrm{CH}_{3}\right), 27.3$ $\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{3}\right), 70.9\left(\mathrm{CH}_{2}\right), 72.5(\mathrm{CH}), 77.9(\mathrm{CH})$, $78.2(\mathrm{CH}), 108.9(\mathrm{C}), 117.8\left(\mathrm{CH}_{2}\right), 133.6(\mathrm{CH}), 160.2(\mathrm{CH})$; MS m / z (rel intensity) $229\left(\mathrm{M}^{+}-\mathrm{Me}, 100\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}$, 229.1076; found, 229.1042. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 59.00; H, 8.25. Found: C, 59.28; H, 8.01.
($1 R / 1 S$)-Allyl-4-O-benzoyl-3-O-formyl-1,2-O-isopropylidene-d-erythritol (18). The allyl derivative $\mathbf{1 8}$ was obtained as a mixture of the $1 R$ and $1 S$ diastereomers (67%, trans:cis $98: 2$). The minor isomer could not be purified from the major diastereomer. Colorless syrup; IR $\left(\mathrm{CHCl}_{3}\right) 3075,1728,1643,1274,1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ major isomer $\delta_{\mathrm{H}} 1.43(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 2.39(1 \mathrm{H}$, ddd, $J=7.1,7.1,14.7 \mathrm{~Hz}), 2.47(1 \mathrm{H}$, ddd, $J=4.9,7.1,14.6 \mathrm{~Hz})$, $3.97(1 \mathrm{H}, \mathrm{dd}, J=7.1,7.2 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{ddd}, J=4.5,7.2,7.2$ $\mathrm{Hz}), 4.46(1 \mathrm{H}, \mathrm{dd}, J=7.0,12.2 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{dd}, J=2.9,12.2$ $\mathrm{Hz}), 5.15(1 \mathrm{H}, \mathrm{dd}, J=1.4,9.8 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{dd}, J=1.2,18.8$ $\mathrm{Hz}), 5.44(1 \mathrm{H}$, ddd, $J=2.8,6.6,6.6 \mathrm{~Hz}), 5.87(1 \mathrm{H}$, dddd, $J=6.9$, $6.9,10.3,17.1 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{dd}, J=7.7,7.9 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,7.5 \mathrm{~Hz}), 8.02(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 8.13(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR
$(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 26.9\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right)$, $71.5(\mathrm{CH}), 78.1(\mathrm{CH}), 78.2(\mathrm{CH}), 109.9(\mathrm{C}), 118.1\left(\mathrm{CH}_{2}\right), 128.5$ $(2 \times \mathrm{CH}), 129.6(\mathrm{C}), 129.7(2 \times \mathrm{CH}), 133.2(2 \times \mathrm{CH}), 159.9$ (CH), 166.1 (C); MS m/z (rel intensity) 319 ($\mathrm{M}^{+}-\mathrm{Me}, 43$), 105 ($[\mathrm{PhCO}]^{+}, 100$); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}, 319.1182$; found, 319.1171; calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}, 105.0340$; found, 105.0345. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$: $\mathrm{C}, 64.66 ; \mathrm{H}, 6.63$. Found: C, $64.65 ; \mathrm{H}, 6.79$.
(1S)-Allyl-3-O-formyl-1,2-O-isopropylidene-4,5-di- O-methyl-d-arabinitol (19). The allyl derivative 19 was obtained as the 1,2trans isomer (45\%). Colorless oil; $[\alpha]_{\mathrm{D}}-12\left(c 0.35, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1728,1173,1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ_{H} $1.38(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{ddd}, J=6.9,7.1,14.3 \mathrm{~Hz})$, $2.43(1 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.37(1 \mathrm{H}, \mathrm{dd}, J=4.6,10.6 \mathrm{~Hz}), 3.47$ $(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{ddd}, J=2.7,4.5,7.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=$ $2.7,10.6 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{ddd}, J=4.7,7.1,8.1 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}$, $J=2.3,8.3 \mathrm{~Hz}), 5.10-5.16(3 \mathrm{H}, \mathrm{m}), 5.84(1 \mathrm{H}$, dddd, $J=6.8$, $7.0,10.2,17.0 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz) $\delta_{\mathrm{C}} 26.6$ $\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 36.5\left(\mathrm{CH}_{2}\right), 58.4\left(\mathrm{CH}_{3}\right), 59.4\left(\mathrm{CH}_{3}\right), 68.7(\mathrm{CH})$, $70.6\left(\mathrm{CH}_{2}\right), 75.7(\mathrm{CH}), 78.2(\mathrm{CH}), 78.7(\mathrm{CH}), 108.7(\mathrm{C}), 117.8$ $\left(\mathrm{CH}_{2}\right), 133.4(\mathrm{CH}), 160.0(\mathrm{CH}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $273\left(\mathrm{M}^{+}-\right.$ $\mathrm{Me}, 69), 247\left(\mathrm{M}^{+}-\mathrm{allyl}, 14\right), 89\left(\left[\mathrm{MeOCH}_{2} \mathrm{CHOMe}^{+}, 100\right), 59\right.$ ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}$, 69); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{6}, 273.1338$; found, 273.1352; calcd for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}, 89.0602$; found, 89.0626. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6}$: C, $58.32 ; \mathrm{H}, 8.39$. Found: C, $58.38 ; \mathrm{H}, 8.12$.

Conversion of Acetoxy Acetals 14, 16, 24, and 25 into Phenyl Ketone Derivatives 20, 21, 26, and 27. Similar to the allylation reaction, but using 1-phenyl-1-(trimethylsilyloxy)ethane as the nucleophile and carrying out the addition at $0^{\circ} \mathrm{C}$.
(1S)-1-(2-Oxo-2-phenylethyl)-4-O-formyl-1,2-O-isopropylidene-3,5-di- \boldsymbol{O}-methyl-d-arabinitol (26). Obtained from acetoxy acetal $24(91 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}-4\left(c 0.2, \mathrm{CHCl}_{3}\right)$; IR (film) 1726, $1685,1111,1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{s}), 1.42$ $(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{dd}, J=5.7,16.9 \mathrm{~Hz}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.49(1 \mathrm{H}$, dd, $J=6.3,16.9 \mathrm{~Hz}), 3.57(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=2.4,6.9 \mathrm{~Hz})$, $3.68(1 \mathrm{H}, \mathrm{dd}, J=5.3,11.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{dd}, J=2.6,11.0 \mathrm{~Hz})$, $3.91(1 \mathrm{H}, \mathrm{dd}, J=2.4,7.8 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{ddd}, J=6.0,6.2,7.8$ $\mathrm{Hz}), 5.18(1 \mathrm{H}$, ddd, $J=2.5,4.6,7.1 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{dd}, J=7.6$, $7.8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 7.97(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz})$, $8.10(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 26.6\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right)$, $42.7\left(\mathrm{CH}_{2}\right), 58.9\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{3}\right), 70.5\left(\mathrm{CH}_{2}\right), 72.5(\mathrm{CH}), 73.3$ $(\mathrm{CH}), 77.3(\mathrm{CH}), 80.9(\mathrm{CH}), 109.2(\mathrm{C}), 128.2(2 \times \mathrm{CH}), 128.7(2$ $\times \mathrm{CH}), 133.4(\mathrm{CH}), 136.7(\mathrm{C}), 160.4(\mathrm{CH}), 197.4(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $351\left(\mathrm{M}^{+}-\mathrm{Me}, 4\right), 219\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{CH}-\right.$ (OCHO)CHOMe, 42), 147 ([$\left.\left.\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OCHO}) \mathrm{CHOMe}\right]^{+}, 12\right)$, $105\left([\mathrm{PhCO}]^{+}, 100\right), 77\left([\mathrm{Ph}]^{+}, 26\right) ;$ HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{7}$, 351.1444; found, 351.1430; calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}, 105.0340$; found, 105.0301. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{7}: \mathrm{C}, 62.28 ; \mathrm{H}, 7.15$. Found: C, 62.36; H, 7.06.

Conversion of Acetoxy Acetals 14, 16, 24, and 25 into Butenolides 28-39. Similar to the allylation reaction, but using 2-(trimethylsilyloxy)furan as the nucleophile and carrying out the addition at $0{ }^{\circ} \mathrm{C}$.
(1S)-4-O-Formyl-1,2-O-isopropylidene-3,5-di- O-methyl-1-(4'-oxo-(1'S)-(1'H)-furanyl)-d-arabinitol (34), (1S)-4-O-Formyl-1,2-O-isopropylidene-3,5-di- O-methyl-1-(4^{\prime}-oxo-($\left.1^{\prime} R\right)$-($\left.1^{\prime} H\right)$-furanyl)-D-arabinitol (35), and (1S)-4-O-Formyl-1,2-O-isopropylidene-3,5-di- O-methyl-1-(4'-oxo-1' $\left.\mathbf{3}^{\prime} H\right)$-furanyl)-d-arabinitol (36). Obtained from the acetoxy acetal 24 (21% for product $34,11 \%$ for 35, and 30% for 36). Compound 34: colorless oil; $[\alpha]_{D}-44$ (c $0.3, \mathrm{CHCl}_{3}$); IR (film) 1790, 1759, 1727, 1112, $1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.45(3 \mathrm{H}$, s), $3.66(1 \mathrm{H}, \mathrm{dd}, J=5.0,11.1 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}, J=2.3,7.3 \mathrm{~Hz})$, $3.74(1 \mathrm{H}, \mathrm{dd}, J=2.5,11.1 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=7.9,8.1 \mathrm{~Hz})$, $4.19(1 \mathrm{H}, \mathrm{dd}, J=2.3,7.6 \mathrm{~Hz}), 4.94(1 \mathrm{H}, \mathrm{ddd}, J=1.7,1.7,8.4$ $\mathrm{Hz}), 5.19(1 \mathrm{H}, \mathrm{ddd}, J=2.4,5.0,7.3 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=1.9$, $5.7 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{dd}, J=1.3,5.7 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(100.6 \mathrm{MHz}) \delta_{\mathrm{C}} 26.6\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 59.0\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right)$, $70.4\left(\mathrm{CH}_{2}\right), 72.8(\mathrm{CH}), 76.6(\mathrm{CH}), 77.0(\mathrm{CH}), 80.0(\mathrm{CH}), 83.3(\mathrm{CH})$, 110.4 (C), 122.2 (CH), 155.2 (CH), $160.2(\mathrm{CH}), 172.1$ (C); MS
m / z (rel intensity) $315\left(\mathrm{M}^{+}-\mathrm{Me}, 51\right), 183\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{CH}-\right.$ (OCHO)CHOMe, 62), $147\left(\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OCHO}) \mathrm{CHOMe}\right]^{+}, 62\right)$, 101 ([2,2-dimethyl-1,3-dioxolane - H] $\left.{ }^{+}, 100\right)$, 59 ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}$, 26); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{8}, 315.1080$; found, 315.1055 ; calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}, 101.0603$; found, 101.0577. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{8}$: C, 54.54; H, 6.71. Found: C, 54.53; H, 6.75. Compound 35: colorless oil; $[\alpha]_{\mathrm{D}}+29\left(c 0.1, \mathrm{CHCl}_{3}\right) ;$ IR (film) $1785,1761,1727$, $1163,1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.33(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}$, s), $3.38(3 \mathrm{H}, \mathrm{s}), 3.53(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=1.8,5.1 \mathrm{~Hz}), 3.67$ $(1 \mathrm{H}, \mathrm{dd}, J=5.1,10.9 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.1,10.9 \mathrm{~Hz}), 4.30$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$), $5.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.21(1 \mathrm{H}$, ddd, $J=3.1,5.6,5.6 \mathrm{~Hz}$), $6.22(1 \mathrm{H}, \mathrm{dd}, J=2.2,5.8 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{dd}, J=1.4,5.8 \mathrm{~Hz})$, $8.11(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(100.6 \mathrm{MHz}) \delta_{\mathrm{C}} 26.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right)$, $59.0\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 70.3\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 75.0(\mathrm{CH}), 76.4$ $(\mathrm{CH}), 77.9(\mathrm{CH}), 81.0(\mathrm{CH}), 110.5(\mathrm{C}), 122.9(\mathrm{CH}), 152.8(\mathrm{CH})$, $160.2(\mathrm{CH}), 172.4(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $315\left(\mathrm{M}^{+}-\mathrm{Me}, 69\right)$, $183\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OCHO}) \mathrm{CHOMe}, 68\right), 147\left(\left[\mathrm{MeOCH}_{2} \mathrm{CH}-\right.\right.$ (OCHO)CHOMe] ${ }^{+}$, 52), 101 ([2,2-dimethyl-1,3-dioxolane - H] ${ }^{+}$, 100), 59 ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}, 28$); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{8}, 315.1080$; found, 315.1139; calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}, 101.0603$; found, 101.0625. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{8}$: C, 54.54; H, 6.71. Found: C, $54.58 ; \mathrm{H}$, 6.66. Compound 36: colorless oil; $[\alpha]_{D}-5$ (c $0.17, \mathrm{CHCl}_{3}$); IR (film) 1758, 1727, 1113, $1079 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.43$ $(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=$ $5.5,11.1 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=2.4,11.1 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=$ $1.9,6.8 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{dd}, J=1.5$, $8.3 \mathrm{~Hz}), 4.88(2 \mathrm{H}, \mathrm{s}), 5.15(1 \mathrm{H}$, ddd, $J=2.2,5.5,6.7 \mathrm{~Hz}), 7.53$ $(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz) $\delta_{\mathrm{C}} 26.4$ $\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 58.9\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 70.4\left(\mathrm{CH}_{2}\right), 70.7\left(\mathrm{CH}_{2}\right)$, $71.2(\mathrm{CH}), 73.2(\mathrm{CH}), 76.3(\mathrm{CH}), 80.7(\mathrm{CH}), 109.8(\mathrm{C}), 133.0(\mathrm{C})$, $147.2(\mathrm{CH}), 160.3(\mathrm{CH}), 172.0(\mathrm{C}) ; \mathrm{MS} \mathrm{m/z}$ (rel intensity) $315\left(\mathrm{M}^{+}\right.$ - Me, 42), 183 ($\left.\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OCHO}) \mathrm{CHOMe}, 32\right), 165$ $\left(\mathrm{M}^{+}-\left[2 \times \mathrm{MeO}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}+\mathrm{OCHO}, 100\right), 147\left(\left[\mathrm{MeOCH}_{2} \mathrm{CH}-\right.\right.\right.$ (OCHO)CHOMe] ${ }^{+}$, 42), 101 ([2,2-dimethyl-1,3-dioxolane - H $]^{+}$, 75); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{8}, 315.1080$; found, 315.1040; calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}, 165.0552$; found, 165.0611. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{8}$: C, 54.54 ; H, 6.71. Found: C, 54.32; H, 6.95.

Conversion of Acetoxy Acetals 14, 16, 24, and 25 into Cyclohexanones 46-49. Similar to the allylation reaction, but using 1-(trimethylsiloxy)cyclohexene as the nucleophile and carrying out the addition at $0{ }^{\circ} \mathrm{C}$.
($1 S, 1^{\prime} R / S$)-4-O-Formyl-1,2-O-isopropylidene-3,5-di-O-methyl-1-[2'-oxo-1'-cyclohexyl]-D-arabinitol (48). Obtained from acetoxy acetal $24(90 \%)$ as an inseparable diastereomer mixture (2.5:1). Yellow oil; $[\alpha]_{\mathrm{D}}-11\left(c 0.3, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 1724,1712,1102$, $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) major diastereomer $\delta_{\mathrm{H}} 1.32(3 \mathrm{H}$, s), $1.40(3 \mathrm{H}, \mathrm{s}), 1.66-1.68(3 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m})$, $2.33-2.39(3 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}$, ddd, $J=5.8,6.6,12.4 \mathrm{~Hz}), 3.37$ $(3 \mathrm{H}, \mathrm{s}), 3.56(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=5.6,11.0 \mathrm{~Hz}), 3.749(1 \mathrm{H}$, dd, $J=2.5,6.5 \mathrm{~Hz}), 3.754(1 \mathrm{H}, \mathrm{dd}, J=2.3,11.2 \mathrm{~Hz}), 3.87(1 \mathrm{H}$, dd, $J=2.5,6.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}, J=6.9,7.0 \mathrm{~Hz}), 5.13(1 \mathrm{H}$, ddd, $J=2.3,5.8,6.6 \mathrm{~Hz}$), $8.09(1 \mathrm{H}, \mathrm{s})$; minor diastereomer (the signals overlapped with those of the major isomer are not described): $\delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.64-1.68(3 \mathrm{H}, \mathrm{m}), 1.94$ $(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{m}), 2.33-2.39(2 \mathrm{H}, \mathrm{m}), 2.74$ (1 H , ddd, $J=5.2,5.6,11.5 \mathrm{~Hz}$), $3.37(3 \mathrm{H}, \mathrm{s}), 3.57(3 \mathrm{H}, \mathrm{s}), 3.62$ $(1 \mathrm{H}, \mathrm{dd}, J=1.8,8.4 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}), 4.50$ $(1 \mathrm{H}, \mathrm{dd}, J=5.2,7.9 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz})$ major isomer $\delta_{\mathrm{C}} 24.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right)$, $30.3\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{CH}), 59.0\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 70.7$ $\left(\mathrm{CH}_{2}\right), 73.7(\mathrm{CH}), 75.2(\mathrm{CH}), 78.1(\mathrm{CH}), 80.6(\mathrm{CH}), 109.2(\mathrm{C})$, $160.5(\mathrm{CH}), 211.7(\mathrm{C})$; minor diastereomer $\delta_{\mathrm{C}} 24.5\left(\mathrm{CH}_{2}\right), 26.6$ $\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH})$, $58.8\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{3}\right), 70.6\left(\mathrm{CH}_{2}\right), 73.8(\mathrm{CH}), 74.6(\mathrm{CH}), 77.5$ $(\mathrm{CH}), 77.6(\mathrm{CH}), 108.8(\mathrm{C}), 160.5(\mathrm{CH}), 211.0(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $329\left(\mathrm{M}^{+}-\mathrm{Me}, 7\right), 246\left(\mathrm{M}^{+}\right.$- cyclohexanone, 53), 139 $\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OCHO}) \mathrm{CHOMe}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 100\right), 59$ ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}, 77$); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{7}, 329.1600$; found,
329.1609; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}$, 139.0759; found, 139.0791. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{7}$: C, 59.29; H, 8.19. Found: C, 59.25; H, 8.49.

Hydrolysis of the Formate Group in Cyclohexanones 46, 47, and 49. The cyclohexanone (0.2 mmol) was treated with 1% methanolic $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The solution was stirred at room temperature for 30 min , poured into water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with sodium sulfate, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (hexanes/EtOAc) to give alcohols 50, 51, or 52.
($1 R, 1^{\prime} R / S$)-1,2-O-Isopropylidene-4-O-methyl-1-[2^{\prime}-oxo- 1^{\prime}-cy-clohexyl]-D-erythritol (50). Isolated as an inseparable diastereomer mixture (2:1). Colorless oil; $[\alpha]_{\mathrm{D}}+30\left(c 0.83, \mathrm{CHCl}_{3}\right)$; IR 3568, 3456, 1706, 1236, 1132, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) major diastereomer $\delta_{\mathrm{H}} 1.37(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.62-1.76(3 \mathrm{H}, \mathrm{m})$, $1.95(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}$, $\mathrm{m}), 2.63(1 \mathrm{H}$, ddd, $J=5.7,5.7,11.0 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{br}$ s), 3.40 $(3 \mathrm{H}, \mathrm{s}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=1.3,9.7 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=2.5,10.0$ $\mathrm{Hz}), 3.74-3.82(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{dd}, J=5.5,5.5 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.35(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.62-1.76(3 \mathrm{H}, \mathrm{m})$, $1.93-1.96(2 \mathrm{H}, \mathrm{m}), 2.09(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{m})$, $2.76(1 \mathrm{H}, \mathrm{ddd}, J=5.0,5.0,10.1 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz})$, $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=1.9,9.7 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{dd}$, $J=2.8,9.7 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=6.5,7.9 \mathrm{~Hz})$, $4.40(1 \mathrm{H}, \mathrm{dd}, J=4.9,6.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz) major diastereomer $\delta_{\mathrm{C}} 24.4\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.6\left(2 \times \mathrm{CH}_{3}\right), 28.0$ $\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 53.1(\mathrm{CH}), 59.2\left(\mathrm{CH}_{3}\right), 72.4(\mathrm{CH}), 73.8\left(\mathrm{CH}_{2}\right)$, $77.4(\mathrm{CH}), 78.5(\mathrm{CH}), 109.5(\mathrm{C}), 211.9(\mathrm{C})$; minor diastereomer $\delta_{\mathrm{C}} 23.9\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 27.6\left(2 \times \mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right)$, $53.2(\mathrm{CH}), 59.2\left(\mathrm{CH}_{3}\right), 72.2(\mathrm{CH}), 73.7\left(\mathrm{CH}_{2}\right), 77.9(\mathrm{CH}), 78.9$ (CH), 108.9 (C), 212.4 (C); MS m/z (rel intensity) 257 (M^{+}- Me, 7), $197\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OH})\right], 25\right), 174\left(\mathrm{M}^{+}\right.$- cyclohexanone, 21), $139\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OH})+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 100\right), 59$ ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}, 47$); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{5}, 257.1389$; found, 257.1385; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}, 139.0759$; found, 139.0755. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 61.74; H, 8.88. Found: C, 61.62; H, 8.89.
($1 S, 1^{\prime} R / S$)-1,2-O-Isopropylidene-4,5-di-O-methyl-1-[2'-oxo-1'-cyclohexyl]-d-arabinitol (51). Isolated as an inseparable diastereomer mixture (7:3). Yellow oil; $[\alpha]_{\mathrm{D}}-22\left(c 0.08, \mathrm{CHCl}_{3}\right.$); IR $3559,1709,1236,1382,1232,1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) major diastereomer $\delta_{\mathrm{H}} 1.37(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.65-1.71(3 \mathrm{H}$, $\mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{m}), 2.47$ $(1 \mathrm{H}, \mathrm{ddd}, J=5.4,5.4,11.4 \mathrm{~Hz}), 2.58(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.29$ $(1 \mathrm{H}$, ddd, $J=1.4,4.3,8.5 \mathrm{~Hz}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.59$ $(1 \mathrm{H}, \mathrm{dd}, J=1.4,10.4 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.3 \mathrm{~Hz}), 3.70$ $(1 \mathrm{H}, \mathrm{dd}, J=4.0,10.2 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}), 4.46$ $(1 \mathrm{H}, \mathrm{dd}, J=6.0,7.8 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{s})$, $1.42(3 \mathrm{H}, \mathrm{s}), 1.65-1.71(3 \mathrm{H}, \mathrm{m}), 1.93-2.02(2 \mathrm{H}, \mathrm{m}), 2.07(1 \mathrm{H}$, m), $2.33(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \operatorname{ddd}, J=$ $5.7,5.7,11.0 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.44(3 \mathrm{H}, \mathrm{s}), 3.56$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.7 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{dd}, J=1.4,10.4 \mathrm{~Hz}), 3.70$ $(1 \mathrm{H}, \mathrm{dd}, J=4.0,10.2 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.6 \mathrm{~Hz}), 4.41$ $(1 \mathrm{H}, \mathrm{dd}, J=6.1,8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz) major diastereomer $\delta_{\mathrm{C}} 24.5\left(\mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{CH}_{3}\right)$, $27.3\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 52.8(\mathrm{CH}), 58.0\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{3}\right), 68.2$ $(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2}\right), 74.6(\mathrm{CH}), 78.5(\mathrm{CH}), 80.5(\mathrm{CH}), 108.7(\mathrm{C})$, $211.0(\mathrm{C})$; minor diastereomer $\delta_{\mathrm{C}} 24.3\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 27.1$ $\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH}), 58.1\left(\mathrm{CH}_{3}\right)$, $59.3\left(\mathrm{CH}_{3}\right), 68.0(\mathrm{CH}), 71.2\left(\mathrm{CH}_{2}\right), 74.9(\mathrm{CH}), 78.5(\mathrm{CH}), 80.6$ (CH), 108.6 (C), 211.0 (C); MS m/z (rel intensity) 301 ($\mathrm{M}^{+}-\mathrm{Me}$, 4), $139\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OMe}) \mathrm{CHOH}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 100\right), 59$ ($\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}, 32$); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{6}, 301.1651$; found, 301.1645; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}, 139.0759$; found, 139.0765. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6}$: C, $60.74 ; \mathrm{H}, 8.92$. Found: C, $60.71 ; \mathrm{H}, 8.95$.
($1 R, 1^{\prime} R / S$)-5-Deoxy-1,2- O-Isopropylidene-3- O-methyl-1-[2'-oxo-1'-cyclohexyl]-L-arabinitol (52). Isolated as an inseparable diastereomer mixture (3:2). Colorless oil; $[\alpha]_{\mathrm{D}}+24\left(c 0.36, \mathrm{CHCl}_{3}\right)$; IR 3469, 1708, 1215, 1099, $1045 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz) major diastereomer $\delta_{\mathrm{H}} 1.24(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}$,
s), $1.57-1.74(4 \mathrm{H}, \mathrm{m}), 1.92-1.94(2 \mathrm{H}, \mathrm{m}), 2.28-2.33(2 \mathrm{H}, \mathrm{m})$, $2.49(1 \mathrm{H}$, ddd, $J=5.3,6.5,10.4 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{br}$ s), $3.26(1 \mathrm{H}$, dd, $J=2.7,5.5 \mathrm{~Hz}), 3.51(3 \mathrm{H}, \mathrm{s}), 4.04-4.09(2 \mathrm{H}, \mathrm{m}), 4.46(1 \mathrm{H}$, dd, $J=6.7,7.2 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.26(3 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.57-1.73(3 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{m})$, $1.96(1 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}$, ddd, $J=5.2,6.2,10.3 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{br}$ s), $3.13(1 \mathrm{H}, \mathrm{dd}, J=1.7$, $7.3 \mathrm{~Hz}), 3.51(3 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, \mathrm{m}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0$ $\mathrm{Hz}), 4.53(1 \mathrm{H}, \mathrm{dd}, J=5.0,7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz) major diastereomer $\delta_{\mathrm{C}} 20.0\left(\mathrm{CH}_{3}\right)$, $24.1\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{3}\right)$, $27.4\left(\mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{CH}_{3}\right), 30.0\left(\mathrm{CH}_{2}\right), 42.4\left(\mathrm{CH}_{2}\right), 54.8(\mathrm{CH}), 59.0\left(\mathrm{CH}_{3}\right), 67.1$ $(\mathrm{CH}), 75.4(\mathrm{CH}), 80.4(\mathrm{CH}), 82.0(\mathrm{CH}), 108.9(\mathrm{C}), 211.8(\mathrm{C})$; minor diastereomer $\delta_{\mathrm{C}} 20.1\left(\mathrm{CH}_{3}\right)$, $24.5\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right)$, $27.6\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 42.3\left(\mathrm{CH}_{2}\right), 53.0(\mathrm{CH}), 59.0\left(\mathrm{CH}_{3}\right), 67.1$ $(\mathrm{CH}), 75.2(\mathrm{CH}), 77.5(\mathrm{CH}), 81.7(\mathrm{CH}), 109.1(\mathrm{C}), 211.1(\mathrm{C}) ; \mathrm{MS}$ m / z (rel intensity) $271\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 139\left(\mathrm{M}^{+}-[\mathrm{MeCH}(\mathrm{OH}) \mathrm{CHOMe}\right.$ $\left.\left.+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 48\right), 89\left([\mathrm{MeCH}(\mathrm{OH}) \mathrm{CHOMe}]^{+}, 100\right), 59$ ($\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}, 49$); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}, 271.1545$; found, 271.1546; calcd for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{2}, 89.0603$; found, 89.0602. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 62.91; H, 9.15. Found: C, 62.63; H, 8.99.

Oxidation of Hydroxyketones 50-52 to Diketones 53-55. Jones' reagent was added dropwise to a solution of the hydroxyketone (0.2 mmol) in dry acetone (4 mL) at $0^{\circ} \mathrm{C}$, until total conversion of the starting material was observed by TLC analysis $(3-6 \mathrm{~h})$. The reaction mixture was poured into a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried as before, and the solvent was removed under vacuum. The residue was purified by chromatography on silica gel (hexanes/EtOAc), affording the diketones 53, 54, or 55.
($1 R, 1^{\prime} R / S$)-3-Deoxy-1,2- O-isopropylidene-4- O-methyl-1-[2'-oxo-1'-cyclohexyl]-d-erythritol-3-one (53). Isolated as an inseparable diastereomer mixture (3:2). Colorless oil; $[\alpha]_{\mathrm{D}}+10$ (c 0.29 , CHCl_{3}); IR 1734, 1710, 1451, 1384, 1161, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ major diastereomer $\delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.52$ $(1 \mathrm{H}, \mathrm{m}), 1.60-1.66(3 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.28$ $(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{ddd}, J=5.8,6.1,11.2 \mathrm{~Hz}), 3.45$ $(3 \mathrm{H}, \mathrm{s}), 4.15(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=6.4,7.6 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.42(6 \mathrm{H}, \mathrm{s}), 1.52(1 \mathrm{H}, \mathrm{m}), 1.60-1.66(3 \mathrm{H}, \mathrm{m})$, $1.95(1 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}$, ddd, $J=5.4,6.2,10.7 \mathrm{~Hz}), 3.44(3 \mathrm{H}, \mathrm{s}), 4.33(1 \mathrm{H}, \mathrm{d}, J=18.2$ $\mathrm{Hz}), 4.34(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}), 4.48$ $(1 \mathrm{H}, \mathrm{dd}, J=5.1,7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz) major diastereomer $\delta_{\mathrm{C}} 24.3\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{3}\right)$, $27.0\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{CH}), 59.3\left(\mathrm{CH}_{3}\right), 75.4\left(\mathrm{CH}_{2}\right), 76.6$ $(\mathrm{CH}), 80.4(\mathrm{CH}), 110.6(\mathrm{C}), 205.1(\mathrm{C}), 210.4(\mathrm{C})$; minor diastereomer $\delta_{\mathrm{C}} 24.3\left(\mathrm{CH}_{2}\right)$, $26.7\left(2 \times \mathrm{CH}_{3}\right)$, $27.0\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $42.1\left(\mathrm{CH}_{2}\right), 52.9(\mathrm{CH}), 59.3\left(\mathrm{CH}_{3}\right), 75.6\left(\mathrm{CH}_{2}\right), 76.0(\mathrm{CH}), 79.9$ (CH), 110.5 (C), 205.5 (C), 210.4 (C); MS m / z (rel intensity) 270 $\left(\mathrm{M}^{+}, 2\right), 238\left(\mathrm{M}^{+}-\mathrm{MeOH}, 1\right), 212\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}, 4\right), 197$ $\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2} \mathrm{CO}, 39\right), 139\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CO}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right]\right.$, 100); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5}, 270.1467$; found, 270.1471; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}, 139.0759$; found, 139.0757. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 62.20; H, 8.20. Found: C, 62.03; H, 8.40.
(1S,1'R/S)-3-Deoxy-1,2-O-isopropylidene-4,5-di- O-methyl-1-[2'-oxo-1'-cyclohexyl]-d-arabinitol-3-one (54). Isolated as an inseparable diastereomer mixture (3:1). Colorless oil; $[\alpha]_{\mathrm{D}}+11$ (c $0.10, \mathrm{CHCl}_{3}$); IR 1709, 1382, 1232, 1098, $1048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major diastereomer $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}$, s), $1.61-1.77(4 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{m})$, $2.41(1 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{ddd}, J=6.3,6.3,12.3 \mathrm{~Hz}), 3.37(3 \mathrm{H}, \mathrm{s})$, $3.52(3 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=6.0,10.7 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=$ $3.1,10.7 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{dd}, J=3.1,6.0 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=6.9,7.1 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.42$ $(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.61-1.77(4 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{m}), 2.31-2.37$ $(2 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.51(3 \mathrm{H}, \mathrm{s})$, $3.69(1 \mathrm{H}, \mathrm{dd}, J=5.5,10.1 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=3.9,10.1 \mathrm{~Hz})$, $4.20(1 \mathrm{H}, \mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{s}), 4.54(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer $\delta_{\mathrm{C}} 24.3\left(\mathrm{CH}_{2}\right), 26.2$
$\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 53.7(\mathrm{CH})$, $58.7\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{3}\right), 72.0\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 79.7(\mathrm{CH}), 85.2$ $(\mathrm{CH}), 110.6$ (C), 205.8 (C), 210.7 (C); minor diastereomer $\delta_{\mathrm{C}} 24.1$ $\left(\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right)$, $52.7(\mathrm{CH}), 58.8\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{3}\right), 72.0\left(\mathrm{CH}_{2}\right), 76.4(\mathrm{CH}), 78.9$ (CH), 84.7 (CH), 110.6 (C), 206.0 (C), 210.8 (C); MS m/z (rel intensity) $299\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 256\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}, 1\right), 139\left(\mathrm{M}^{+}\right.$ $\left.-\left[\mathrm{MeOCH}_{2} \mathrm{CH}(\mathrm{OMe}) \mathrm{CO}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 100\right), 59\left(\left[\mathrm{Me}_{2} \mathrm{C}=\mathrm{OH}\right]^{+}\right.$, 22); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{6}, 299.1495$; found, 299.1483; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}, 139.0759$; found, 139.0754. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{6}$: C, 61.13; H, 8.34. Found: C, 61.31; H, 8.19.
($1 R, 1^{\prime} R / S$)-4,5-Dideoxy-1,2-O-isopropylidene-3-O-methyl-1-[2'-oxo-1'-cyclohexyl]-L-arabinitol-4-one (55). Isolated as an inseparable diastereomer mixture (2:1). Colorless oil; $[\alpha]_{\mathrm{D}}+92(c$ $0.20, \mathrm{CHCl}_{3}$); IR 1707, 1450, 1216, 1133, 1075, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) major diastereomer $\delta_{\mathrm{H}} 1.32(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}$, s), $1.53-1.60(3 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s})$, $2.34(1 \mathrm{H}, \mathrm{m}), 2.37-2.41(2 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.88$ $(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=2.9,6.2 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}$, $J=6.2,8.2 \mathrm{~Hz})$; minor diastereomer $\delta_{\mathrm{H}} 1.33(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}$, s), $1.53-1.60(3 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.16(1 \mathrm{H}, \mathrm{m})$, $2.24(3 \mathrm{H}, \mathrm{s}), 2.37-2.41(2 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{m}), 3.52(3 \mathrm{H}, \mathrm{s}), 3.74$ $(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=2.5,7.7 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{dd}$, $J=4.8,7.7 \mathrm{~Hz}$) ; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz) major diastereomer δ_{C} $24.6\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{3}\right)$, $27.2\left(\mathrm{CH}_{3}\right)$, $27.4\left(\mathrm{CH}_{3}\right)$, $27.8\left(\mathrm{CH}_{2}\right)$, 30.8 $\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 55.3(\mathrm{CH}), 59.5\left(\mathrm{CH}_{3}\right), 75.5(\mathrm{CH}), 78.9(\mathrm{CH})$, $86.4(\mathrm{CH}), 109.6(\mathrm{C}), 211.2(\mathrm{C}), 211.8(\mathrm{C})$; minor diastereomer δ_{C} $24.4\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right), 53.0(\mathrm{CH}), 59.4\left(\mathrm{CH}_{3}\right), 74.5(\mathrm{CH}), 78.5(\mathrm{CH})$, $86.1(\mathrm{CH}), 109.0(\mathrm{C}), 211.0(\mathrm{C}), 211.5(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $269\left(\mathrm{M}^{+}-\mathrm{Me}, 2\right), 252\left(\mathrm{M}^{+}-\mathrm{MeOH}, 6\right), 241\left(\mathrm{M}^{+}-\mathrm{MeCO}\right.$, 13), 197 (M^{+}- MeCOCHOMe, 57), 139 (M^{+}- [MeCOCHOMe $\left.\left.+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 100\right), 87\left([\mathrm{MeCOCHOMe}]^{+}, 50\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{5}, 269.1389$; found, 269.1379; calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}, 139.0759$; found, 139.0762. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 63.36; H, 8.51. Found: C, 63.31; H, 8.39.

Reductive Amination of Diketones 53-55. Synthesis of Chiral Decahydroquinolines 56-59 and Benzodiazepines 60 and 61. To a solution of the diketone (0.1 mmol), dry benzylamine $(11 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$, and $\mathrm{AcOH}(6 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ in dry $\mathrm{MeOH}(2$ mL), at $60^{\circ} \mathrm{C}$, was added dropwise a solution of $\mathrm{NaBH}_{3} \mathrm{CN}(8$ $\mathrm{mg}, 0.12 \mathrm{mmol})$ in dry $\mathrm{MeOH}(0.25 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, poured into 10% aqueous NaOH , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried, evaporated, and purified as usual to yield the decahydroquinolines 56-59 (from diketones $\mathbf{5 3}$ and 54) and the benzodiazepines 60 and 61 (from diketone 55).
N-Benzyl-($2 R, 3 R, 4 R, 4 \mathrm{aS}, 8 \mathrm{a} R$)-3,4- O-Isopropylidene-2-meth-oxymethyl-4a,8a-decahydroquinoline (56) and N-Benzyl($2 R, 3 R, 4 R, 4 \mathrm{a} R, 8 \mathrm{aS}$)-3,4-O-Isopropylidene-2-methoxymethyl-4a,8a-decahydroquinoline (57). Generated from diketone 53 (43\% of product 56 and 12% of its isomer 57). Compound 56: colorless oil; $[\alpha]_{\mathrm{D}}+20\left(c 0.14, \mathrm{CHCl}_{3}\right)$; IR 3084, 3063, 1452, 1372, 1231, $1106,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta_{\mathrm{H}} 1.05(1 \mathrm{H}, \mathrm{m}), 1.34(1 \mathrm{H}$, $\mathrm{m}), 1.38-1.43(2 \mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.52(1 \mathrm{H}, \mathrm{m})$, $1.72-1.80(2 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 2.09(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{ddd}, J$ $=4.7,4.7,12.5 \mathrm{~Hz}), 3.13(1 \mathrm{H}$, ddd, $J=1.9,6.5,9.6 \mathrm{~Hz}), 3.26$ $(3 \mathrm{H}, \mathrm{s}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=9.0,9.7 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=6.6,10.5$ $\mathrm{Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=1.8,10.5 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz})$, $3.83(1 \mathrm{H}, \mathrm{dd}, J=8.8,11.7 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 7.22$ $(1 \mathrm{H}, \mathrm{dd}, J=7.2,7.3 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.7 \mathrm{~Hz}), 7.36$ $(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 20.5\left(\mathrm{CH}_{2}\right), 20.6$ $\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 38.1(\mathrm{CH})$, $51.8\left(\mathrm{CH}_{2}\right), 57.7(\mathrm{CH}), 58.5(\mathrm{CH}), 58.6\left(\mathrm{CH}_{3}\right), 72.4\left(\mathrm{CH}_{2}\right), 76.2$ $(\mathrm{CH}), 78.4(\mathrm{CH}), 109.5(\mathrm{C}), 126.5(\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.1(2$ $\times \mathrm{CH}), 141.4(\mathrm{C}) ; \mathrm{MS} m / \mathrm{z}$ (rel intensity) $345\left(\mathrm{M}^{+}, 2\right), 330\left(\mathrm{M}^{+}-\right.$ $\mathrm{Me}, 3), 300\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2}, 100\right), 242\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2}+\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 79\right), 91\left(\left[\mathrm{PhCH}_{2}\right]^{+}, 74\right)$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}$, 345.2304; found, 345.2308 ; calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}, 300.1964$; found,
300.1963. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}, 73.01 ; \mathrm{H}, 9.04 ; \mathrm{N}, 4.05$. Found: C, 72.97; H, 9.09; N, 4.16. Compound 57: colorless oil; $[\alpha]_{\mathrm{D}}+37\left(c 0.10, \mathrm{CHCl}_{3}\right)$; IR 3081, 3064, 1454, 1373, $1120 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.10(1 \mathrm{H}, \mathrm{m}), 1.22-1.28(2 \mathrm{H}, \mathrm{m}), 1.48$ $(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.60-1.80(3 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 2.10-2.13$ $(2 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=3.4,9.7 \mathrm{~Hz}), 3.18(1 \mathrm{H}$, $\mathrm{m}), 3.21(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.4 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=$ $4.7,10.5 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{d}, J=17.2$ $\mathrm{Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, J=7.1,7.2 \mathrm{~Hz})$, $7.32(2 \mathrm{H}, \mathrm{dd}, J=7.4,7.6 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 24.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)$, $28.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 44.5(\mathrm{CH}), 52.8\left(\mathrm{CH}_{2}\right), 58.8\left(\mathrm{CH}_{3}\right), 64.8$ $(\mathrm{CH}), 66.1(\mathrm{CH}), 71.9\left(\mathrm{CH}_{2}\right), 76.8(\mathrm{CH}), 82.7(\mathrm{CH}), 110.0(\mathrm{C})$, $126.1(\mathrm{CH}), 127.5(2 \times \mathrm{CH}), 128.0(2 \times \mathrm{CH}), 142.2(\mathrm{C}) ;$ MS m / z (rel intensity) $345\left(\mathrm{M}^{+}, 1\right), 330\left(\mathrm{M}^{+}-\mathrm{Me}, 4\right), 300\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeOCH}_{2}, 99\right), 242\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 80\right), 91$ $\left(\left[\mathrm{PhCH}_{2}\right]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}, 345.2304$; found, 345.2297 ; calcd for $\mathrm{C}_{7} \mathrm{H}_{7}, 91.0548$; found, 91.0551. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}$: C, 73.01; H, 9.04; N, 4.05. Found: C, 72.94; H, 9.25; N, 3.74.
N-Benzyl-(2S,3S,4S,4aR,8aS)-3,4-O-Isopropylidene-2-[(1'S)-2^{\prime}-dimethoxyethyl)-4a,8a-decahydroquinoline (58) and N-Ben-zyl-(2S,3S,4S,4aS,8aR)-3,4-O-Isopropylidene-2-[(1'S)-2'-dimethox-yethyl)-4a,8a-decahydroquinoline (59). Generated from diketone 54 (10\% of product 58 and 41% of its isomer 59). Compound 58: colorless oil; $[\alpha]_{\mathrm{D}}-48\left(c 0.12, \mathrm{CHCl}_{3}\right)$; IR 3084, 3064, 1493, 1373, 1232, 1120, $1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.13(1 \mathrm{H}, \mathrm{m})$, $1.25-1.42(3 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.53(1 \mathrm{H}, \mathrm{m})$, $1.65-1.75(2 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.63(1 \mathrm{H}, \mathrm{ddd}, J$ $=4.8,5.0,12.4 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.7 \mathrm{~Hz}), 3.36(3 \mathrm{H}, \mathrm{s})$, $3.47(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{dd}, J=9.1,10.3 \mathrm{~Hz}), 3.66$ $(1 \mathrm{H}, \mathrm{dd}, J=4.3,10.3 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{ddd}, J=4.6,4.7,6.8 \mathrm{~Hz})$, $3.77(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{dd}, J=3.0,9.1 \mathrm{~Hz}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{dd}$, $J=7.4,7.8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz})$ $\delta_{\mathrm{C}} 20.3\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right)$, $27.1\left(\mathrm{CH}_{3}\right), 34.9(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 58.4(\mathrm{CH}), 58.8(\mathrm{CH}), 59.0$ $\left(\mathrm{CH}_{3}\right), 59.3\left(\mathrm{CH}_{3}\right), 73.5\left(\mathrm{CH}_{2}\right), 75.1(\mathrm{CH}), 77.8(\mathrm{CH}), 79.9(\mathrm{CH})$, $108.5(\mathrm{C}), 126.3(\mathrm{CH}), 127.2(2 \times \mathrm{CH}), 128.2(2 \times \mathrm{CH}), 141.7$ (C); MS m/z (rel intensity) $374\left(\mathrm{M}^{+}-\mathrm{Me}, 4\right), 300\left(\mathrm{M}^{+}-\right.$ $\mathrm{MeOCH}_{2} \mathrm{CHOMe}$, 98), $242\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CHOMe}+\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right], 99\right), 91\left(\left[\mathrm{PhCH}_{2}\right]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{4}$, 374.2331; found, 374.2338 ; calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}, 242.1545$; found, 242.1555; calcd for $\mathrm{C}_{7} \mathrm{H}_{7}, 91.0548$; found, 91.0552. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4}$: C, $70.92 ; \mathrm{H}, 9.06$; N, 3.60. Found: C, $70.72 ; \mathrm{H}$, 9.12; N, 3.99. Compound 59: colorless oil; $[\alpha]_{\mathrm{D}}-25$ (c 0.11, CHCl_{3}); IR 3064, 3035, 1452, 1382, 1232, 1164, 1101, $1079 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.05(1 \mathrm{H}, \mathrm{m}), 1.25-1.45(3 \mathrm{H}, \mathrm{m}), 1.45$ $(6 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}, \mathrm{m}), 1.67(1 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{m})$, $2.13(1 \mathrm{H}, \mathrm{m}), 2.71(1 \mathrm{H}, \mathrm{ddd}, J=4.7,4.7,12.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}$, $J=9.9 \mathrm{~Hz}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=9.1,9.8$ $\mathrm{Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.9 \mathrm{~Hz}), 3.71(1 \mathrm{H}$, ddd, $J=1.5,4.7$, $5.2 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=4.6,9.2 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=8.8$, $11.7 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz})$, $7.22(1 \mathrm{H}, \mathrm{dd}, J=7.1,7.2 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.7 \mathrm{~Hz})$, $7.34(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 20.5\left(\mathrm{CH}_{2}\right)$, $21.9\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 37.3$ $(\mathrm{CH}), 52.1\left(\mathrm{CH}_{2}\right), 58.0(\mathrm{CH}), 58.2\left(\mathrm{CH}_{3}\right), 58.9\left(\mathrm{CH}_{3}\right), 59.0(\mathrm{CH})$, $73.1\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 77.6(\mathrm{CH}), 80.9(\mathrm{CH}), 109.2(\mathrm{C}), 126.5$ $(\mathrm{CH}), 127.5(2 \times \mathrm{CH}), 128.3(2 \times \mathrm{CH}), 141.1(\mathrm{C}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) $389\left(\mathrm{M}^{+},<1\right), 344\left(\mathrm{M}^{+}-\mathrm{MeOCH}_{2}, 1\right), 300\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeCH}_{2} \mathrm{CHOMe}, 88\right), 242\left(\mathrm{M}^{+}-\left[\mathrm{MeOCH}_{2} \mathrm{CHOMe}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right]\right.$, 73), 91 ($\left[\mathrm{PhCH}_{2}\right]^{+}, 100$); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4}, 389.2566$; found, 389.2550; calcd for $\mathrm{C}_{7} \mathrm{H}_{7}, 91.0547$; found, 91.0548. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4}$: C, $70.92 ; \mathrm{H}, 9.06 ; \mathrm{N}, 3.60$. Found: C, 70.94 ; H, 9.14; N, 3.58.
N-Benzyl-(2R,3S,4S,5R,5aS,9aR)-4,5-O-Isopropylidene-2-meth-yl-3-methoxy-5a,9a-decahydro-1H-benzo [b] azepine (60) and N-Ben-zyl-(2S,3S,4S,5R,5aR,9aS)-4,5-O-isopropylidene-2-methyl-3-meth-
oxy-5a,9a-decahydro-1H-benzo [b]azepine (61). Generated from diketone 55 (22% of product $\mathbf{6 0}$ and 17% of its isomer $\mathbf{6 1}$). Compound 60: colorless oil; $[\alpha]_{\mathrm{D}}+55\left(c 0.12, \mathrm{CHCl}_{3}\right)$; IR 3081, $3064,1506,1457,1369 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.10-1.65$ $(5 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s})$, $1.72-1.78(2 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{ddd}, J$ $=4.3,4.5,12.5 \mathrm{~Hz}), 3.31(1 \mathrm{H}, \mathrm{dd}, J=4.6,5.8 \mathrm{~Hz}), 3.39(1 \mathrm{H}$, dddd, $J=4.5,6.8,6.9,6.9 \mathrm{~Hz}), 3.47(3 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}, \mathrm{d}, J=$ $16.1 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=5.9,9.2 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=9.4$, $10.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{m}), 7.25-7.33$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 17.7\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{2}\right), 26.6$ $\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 38.4(\mathrm{CH})$, $50.4(\mathrm{CH}), 50.8\left(\mathrm{CH}_{2}\right), 57.1(\mathrm{CH}), 59.5\left(\mathrm{CH}_{3}\right), 74.0(\mathrm{CH}), 86.3$ $(\mathrm{CH}), 87.6(\mathrm{CH}), 108.3(\mathrm{C}), 126.2(\mathrm{CH}), 127.4(2 \times \mathrm{CH}), 128.1(2$ $\times \mathrm{CH}), 142.5(\mathrm{C}) ; \mathrm{MS} m / \mathrm{z}$ (rel intensity) $359\left(\mathrm{M}^{+}, 4\right), 344\left(\mathrm{M}^{+}-\right.$ $\mathrm{Me}, 68), 328\left(\mathrm{M}^{+}-\mathrm{MeO}, 67\right), 270\left(\mathrm{M}^{+}-\left[\mathrm{MeO}+\mathrm{Me}_{2} \mathrm{C}=\mathrm{O}\right]\right.$, 30), 91 ($\left[\mathrm{PhCH}_{2}\right]^{+}, 100$); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}, 359.2460$; found, 359.2448; calcd for $\mathrm{C}_{7} \mathrm{H}_{7}, 91.0548$; found, 91.0545. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, $73.50 ; \mathrm{H}, 9.25 ; \mathrm{N}, 3.90$. Found: C, 73.72; H, 9.12; N, 3.99. Compound 61: colorless oil; $[\alpha]_{\mathrm{D}}+14$ (c 0.12, CHCl_{3}); IR 3084, 3062, 1456, 1371, 1235, 1152, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta_{\mathrm{H}} 1.17(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.20-1.60(5 \mathrm{H}$, $\mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.80(1 \mathrm{H}, \mathrm{m}), 1.85-1.95(3 \mathrm{H}, \mathrm{m})$, $2.82(1 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}$, dddd, $J=6.9,6.9,7.0,7.1 \mathrm{~Hz}), 3.10(1 \mathrm{H}$, $\mathrm{dd}, J=8.8,9.0 \mathrm{~Hz}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.87-3.94(3 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}$, dd, $J=9.1,9.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{m}), 7.23-7.31(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) \delta_{\mathrm{C}} 19.0\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right)$, $27.3\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 40.1(\mathrm{CH}), 59.8\left(\mathrm{CH}_{2}\right), 60.1$ $\left(\mathrm{CH}_{3}\right), 61.1(\mathrm{CH}), 61.4(\mathrm{CH}), 77.8(\mathrm{CH}), 81.8(\mathrm{CH}), 86.4(\mathrm{CH})$, $107.9(\mathrm{C}), 126.7(\mathrm{CH}), 127.9(2 \times \mathrm{CH}), 128.2(2 \times \mathrm{CH}), 141.7$ (C); MS m/z (rel intensity) $359\left(\mathrm{M}^{+}, 5\right), 328\left(\mathrm{M}^{+}-\mathrm{MeO}, 66\right), 91$
$\left(\left[\mathrm{PhCH}_{2}\right]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}, 359.2460$; found, 359.2470; calcd for $\mathrm{C}_{7} \mathrm{H}_{7}, 91.0548$; found, 91.0552. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, 73.50 ; H, 9.25; N, 3.90. Found: C, 73.14 ; H, 9.32; N, 3.89.

Acknowledgment. This work was supported by the Investigation Programmes PPQ2000-0728, PPQ2003-01379, and CTQ2006-14260/PPQ of the Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Educación y Ciencia and Ministerio de Ciencia y Tecnología, Spain. We also acknowledge financial support from FEDER funds. D.H. thanks the CSIC-Gobierno de Canarias, CSIC (I3P) and Ministerio de Educación y Ciencia (Plan Nacional FPU) for fellowships.

Supporting Information Available: Preparation of substrate 22, including spectroscopic data of the synthetic intermediates and the final product. Procedures for the allylation and alkylation reactions, and spectroscopic data of phenyl ketones 20, 21, 27, butenolides 28-33 and 37-39, and cyclohexanones 46, 47, and 49. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for acetoxy acetal 24, allyl derivatives 18 and 19, phenyl ketones 20 , 21, 26, and 27, butenolides 28-39, cyclohexanones 46-48 and 50-55, alkaloid analogues 56-61, and substrates 63-65 and 22. This material is available free of charge via the Internet at http://pubs.acs.org.

[^0]: (1) (a) Nakata, P. In Glycoscience; Fraser-Reid, B. O., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, Germany, 2001; Vol. 2, pp 1175-1214. (b) Hanessian, S. Total Synthesis of Natural Products. The "Chiron" Approach; Pergamon Press: Oxford, 1983.
 (2) For the preliminary communications on this work, see: (a) Boto, A.; Hernández, D.; Hernández, R. Org. Lett. 2007, 9, 1721-1724. (b) Boto, A.; Hernández, R.; Suárez, E. Tetrahedron Lett. 2001, 42, 9176-9170.

[^1]: (10) (a) For instance, the coupling of commercial 2-trimethylsilyloxyfuran (TMSOF) with aldehydes is a remarkable strategy for butenolide synthesis Maulide, N.; Marko, I. E. Org. Lett. 2006, 8, 3705-3707. (b) De Rosa, M.; Citro, L.; Soriente, A. Tetrahedron Lett. 2006, 47, 8507-8510.
 (11) (a) Banner, E. J.; Stevens, E. D.; Trudell, M. L. Tetrahedron Lett. 2004, 45, 4411-4414. (b) Toyooka, N.; Okumura, M.; Nemoto, H. J. Org. Chem. 2002, 67, 6078-6081. (c) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W.; Ed.; Pergamon Press: New York, 1999; Vol. 13, pp 1-161. (d) Daly, J. W. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 1988; Vol. 50, pp 141-169.
 (12) Wu, Q.; Ma, D. Nat. Prod. Rep. 2006, 23, 772-788.
 (13) Compound $\mathbf{1 7}$ was volatile, and loss of weight was observed under vacuum.
 (14) For related allyl systems and their synthetic applications, see: (a) Lievens, S. C.; Molinski, T. F. J. Am. Chem. Soc. 2006, 128, 11764-11765. (b) Shing, T. K. M.; Wong, W. F.; Ikeno, T.; Yamada, T. Org. Lett. 2007, 9, 207-209. (c) Enders, D.; Lenzen, A.; Backes, M.; Janeck, C.; Catlin, K.; Lannon, M. I.; Runsink, J.; Raabe, G. J. Org. Chem. 2005, 70, 10538-10551.
 (15) The numbering shown on the C-alditol figures does not always match the IUPAC rules. However, this numbering system allows an easier discussion of the results: the polyhydroxylated chain is numbered as the acetoxy acetal precursor, and the new allyl or alkyl chain is numbered starting from the position closer to the polyol unit.

[^2]: (16) Substrate 22 was previously reported: Kapoor, V. P. Indian J. Chem. 1973, 11, 13-16. However, our synthetic strategy differs from the previous version, and therefore, it is described in Supporting Information.

[^3]: (17) NOESY experiments were carried out with compounds 21 and 26. The spatial interactions observed for compound 21 were $1-\mathrm{H}\left(\delta_{\mathrm{H}} 4.63\right) / 3-\mathrm{H}\left(\delta_{\mathrm{H}} 5.43\right)$, $2-\mathrm{H}\left(\delta_{\mathrm{H}} 4.28\right) / 1^{\prime}-\mathrm{H}_{\mathrm{a}}\left(\delta_{\mathrm{H}} 2.86\right), 2-\mathrm{H} / 1^{\prime}-\mathrm{H}_{\mathrm{b}}\left(\delta_{\mathrm{H}} 3.06\right)$. Compound 26 showed the following spatial interactions: $1-\mathrm{H}\left(\delta_{\mathrm{H}} 4.69\right) / 3-\mathrm{H}\left(\delta_{\mathrm{H}} 3.65\right), 1-\mathrm{H} / 4-\mathrm{H}\left(\delta_{\mathrm{H}} 5.18\right)$, $2-\mathrm{H}\left(\delta_{\mathrm{H}} 3.91\right) / 1^{\prime}-\mathrm{H}_{\mathrm{a}}\left(\delta_{\mathrm{H}} 3.16\right), 2-\mathrm{H} / 1^{\prime}-\mathrm{H}_{\mathrm{b}}\left(\delta_{\mathrm{H}} 3.49\right)$

